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We analyze two approaches to conditional probability, The first approach follows 
Gudder  and Marchand,  M~czyfisky, Cassinelli and Beltrametti, Cassinelli and 
Truini. The second approach follows R6nyi and Kalmfir. The main result is a 
characterization of the first approach with the help of  a function, similarly as 
in the second approach.  

1. I N T R O D U C T I O N  AND P R E L I M I N A R I E S  

Let L be a quan tum logic (i.e., o r thomodu la r  lattice) (Varadarajan,  
1968): (1) L is a nonempty ,  partially ordered set with 0 and 1; (2) for  any 
{an}.~__l c L, V .  a . , / ~ ,  a .  E L; (3) there is a map  3-: L onto L such that: (a) 
for any a E L, (a-L) • = a, (b) if a E L, then a v a I = 1, and (c) if a, b E L and 
a -< b, then b • a• (4) the o r thomodu la r  law is satisfied. This means that 
f o r a ,  b E L ,  a < - b , b = a v ( a l A b ) .  

Elements a, b E L are called or thogonal  (a  3_ b) if a -< b x (or b - a-L). 
Elements a, b E L are called compat ible  (a  ~-> b) if  there are a~, bl,  c E L, 
mutual ly  or thogonal ,  such that  a = al v c, b = b~ v c. 

We shall need the fol lowing property:  I f  {a, b, c} c L and a ~ b, c, 
then al v (Ct 2 ̂  a3)  = (al v a2) ^ (al v a3)  , where ai E {a, b, c} for any i = 1, 2, 3. 

A map  m from L into R such that  (1) m(0) = 0 and re( l )  = 1, and (2) 
a ~o 

{ ,} ,=1E L and an• for any n ~ t implies m ( V ,  a n ) = ~ ,  rn(a,), is called 
a state on L. 

A suppor t  o f  a state m, if it exists, is an element a E L such that  re(b) = 0 
iff a3-b [briefly, a = s (m)] .  

Let M be a set o f  states on L. The pair  (L, M )  will be called a quite 
full system (q.f.s.) if {m E Mira(a)  = 1} c {m E Mira(b) = 1} implies a ~ b. 
The pair  (L, M )  will be called a suppor ted  system if for any m c M, s (m)  E L 
and for  any a E Lo(where Lo = L -  {0}) there is an m E M such that  a = s(m).  
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It is clear that a supported system (L, M)  is q.f.s. Moreover, for (L, M )  a 
supported system, if m(a)  = m(b) = 1 (where a, b c L, m s M) ,  then m(a A 
b ) = l .  

Let us define the binary operation "*"  on L as follows: a*b = (a v b • A 
b. We shall need the following simple lemmas. 

Lemma 1.1. Let a, b ~ L. Then the following statements are equivalent: 

1. a * b = b * a .  
2. a * b = a A b .  
3. a*b<->b*a. 
4. a<->b. 

The proof  is obvious. 

Lemma 1.2. Let a, b ~ L. Then: 

1. ( a * b ) •  
2. a * b = O  iff a •  
3. I f a •  then 

(c* a)  v (c* b) = (c v b • A (c v a ~-) A (a v b) 

4. a = ( b * a )  v (b l  A a), where b*a•177177 A a. 

The proof  is obvious. 

2. TWO A P P R O A C H E S  TO C O N D I T I O N A L  PROBABILITY 
ON A QUANT UM L O G I C  

In this section we analyze two approaches to conditional probabili ty 
on (L, M )  as a supported system. 

Let (L, M)  be a supported system and let M be a ~-convex set of  
states. For a ~  Lo put Mo ={m c Mlm(a)>O} .  Cassinelli and Beltrametti 
(1975) defined a transformation l~a from Ma into Mo such that 

I. s ( l~om)=s(m)*a .  

Cassinelli and Truini (1984) added the following properties: 

II. Let m c M and put L(m)  = {b c LIm(b ) > 0}. Then fla.)m: L(m)-.-> 
M is a map. And for any b~Lo ,  ~ b ( ' ) :  Mb-->M is a map. 

III .  I f  a, b c L, a - b, and re(b) > 0 ,  then 12bm(a) = m ( a ) / m ( b ) .  Then 
the number  I lbm(a) is called the conditional probabili ty of  the 
event a by the condition b in the state m. 
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In the following we suppose that the function 

pro( . [ . )  = f l ( . )m( . ) :  L x  Lc ~ R, L o l L ( m )  

satisfies the axioms I and II. 
The following statements are true (Cassinelli and Beltrametti, 1975) 

for b ~ L(m):  

1. pr" (b lb )=  1. 
2. I f  s ( m )  >-- b, then s (pm(  �9 Ib)) - b. 
3. I f  s ( m )  <- b, then s ( p " ( .  Ib)) = s (m) .  
4. I f  a~--~b and re(a)  = 1, then pm(a[b)  -- 1. 
5. I f  a,~->b, then p(a]b)  = p ( a  Ab]b). 

Let us write L * ( m )  = {b ~ L(m)lb~--~s(m)}.  

Proposition 2.1. Let b * c, b • A C ~ L*(m) .  Then 

pro(. [c) =pro(b*  c]c)pm( �9 [b* c ) + p m ( b  -~ A c l c ) p ~ (  �9 Ib j- A C) 

Proof  Since b* c, b ~ A C ~ L*( m ), then c ~ L*( m ). Moreover,  

s ( m )  A c =  s ( m )  ^ ( b * c )  v s ( m )  ^ b •  c 

But s ( m ) A C = S ( p ~ ( ' [ C ) ) ,  s ( m ) A ( b * c ) = s ( p m ( ' l b * c ) ) ,  s ( m ) A b •  
s (pm(  �9 [b* A C)). From these facts we have, for q c (0, 1), 

pro(. [C) = q ' p ' ( "  Ib* c )+  (1 - q) .pro( .  Ib" A c) 

Since pm(b  * c[c) = q. p " ( b  * c[ b * c) = q and p " ( b  • ^ c[c) = 1 - q, we get 

p m ( ' l c ) = p m ( b * c l c ) p ~ ( ' l b * c ) + p ' ( b •  ^ c l c ) p ' ( ' l b - L A c )  �9 

Let L be a Boolean o--algebra. R~nyi (1956) defined the conditional 
probabili ty as follows: 

Let Lc ~ Lo and P: L x Lc --> R. 

1. I f A  ~ L~, then P ( A ] A )  = 1 and P ( .  IA) is a probabili ty measure on L. 
2. Let B ~ L, C, A ~ L~ such that B c A; then 

P ( B I C )  = P ( A I C ) .  P(BI  A n C)  

Then the function P ( .  l" ) is called a conditional probabili ty on L. 
Now it is clear that the function pro(. l" ) on L x L ( m )  ~ R with Axioms 

I and I I  on a Boolean a-a lgebra  L is a conditional probabili ty in the sense 
of  R6nyi. Moreover,  if  b ~ L (where L is a Boolean g-algebra),  L~ ~ L ( m ) ,  
and a, c ~ Lc, then 

pm( blc) = pr"( alc) " p ~ (  bla A c) + p " (  a• " pm( bla• ^ c) 
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But  

Theorem 2.2. Let rn 6 M and b, b• L(m). Then 

m ( . ) = m ( b ) ' p m ( ' l b ) + m ( b • 1 7 7  iff b~-->s(rn) 

Proof Let b<-->s(m). Then 

s(m) = b A s(rn) v b • ^ s(rn) 

= s ( p ~ " (  �9 Ib))  v s ( p ~ ( - I b i ) )  

= s(q.pm( �9 Ib)+ (1 -q ) .p ro ( .  [b• 

m ( b ) = q . p ' ( b l b ) = q ,  m(b •177177  l -  q 

This means that 

m(.  ) = m(b) 'pm(- ib  ) + m(b•  lb_~) 

Now we show the converse implication. Let 

m(.  ) = re(b).pro(. Ib)+ m(b j)  .pro(. ib • 

Then 

s(m) = s (m)*b  v s (m)*b  " = (s(m) v b • A (s(m) v b) A (b v b • 

= (s(m) v b • A (s(m) v b)) 

This means that s(rn)~-->b. �9 

Corollary2.2.1. If Lc=L*(m) ,  then for a, b 6 L, a<-b, b E Lc 

pm(alb ) ~- rn(a) /m(b)  

In other words, there is an analogy with the Kolmogoroff conditional 
probability. Indeed, if p : L x L c ~ R ,  where LccL*(rn) ,  Axiom III of  
Cassinelli and Truini (1984) is satisfied. 

Now we compare Katm~r's definition of conditional probability with 
the Cassinelli-Truini approach. 

Definition 2.1. (Kalmfir, 1983). Let L be a quantum logic and L~ c Lo. 
If  p: L x  Lc~ [0, co) with (A) p(.Ib)  is a state on L for all boLe,  and (B) 
for all b ~ Lr p(blb) = 1; then the function p( .  ]. ) is called a conditional 
probability on L. 

This definition is very general. Indeed, on a Boolean ~r-algebra it is 
more general then the classical definition (Kotmogorott,  1933; R6nyi, 1956). 
Hence, Kalm~r added the following axioms: 

(C) If a, b~L ,  c, c * b c L c ,  a~-->b, then 

p( a ^ bIc ) = p( btc ) . p( aIc * b) 

(D) If a v b e L c ,  then p ( a l a v b ) + p ( b l a v b ) > O .  
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(E) I f  (a  v b) A (a  v b) e Lc, then  

p(a[(a v b) A (a v b• > 0 

Proposition 2.3. Let (L, M )  be a s u p p o r t e d  system and  M be a g - c o n v e x  
set o f  states.  I f  m ~ M, Lc c L(rn) ,  and  a v b e L c , t h e n  

pm(ala v b ) + p " ( b l a  v b )>  0 

Proof Let pm(ata v b) =p"~(b[a v b) = 0 .  Then  1 =pro(a• A b• v b). 
This means  tha t  

s ( m ) * ( a  v b)<-(a • A b • A (a v b) =0 

F r o m  this fact  we have s(m)  * (a  v b) = 0 and  then  a v b ~ Lc. Then  pm(ala v 
b ) + p m ( b l a v b ) > O .  [] 

In the  fo l lowing  we assume that  (L, M )  is a s u p p o r t e d  sys tem and  M 
is a o - c o n v e x  set o f  states.  

Example2.1. Let m ~ M, Lcc L(m).  Let us wri te  a •  s(m). N o w  we 
choose  b e L such that  b ,/~ a and  a v b = a v b • = 1 (such an e lement  b exists 
if, for  example ,  a • is an  a tom in L).  Then  (a  v b)A (a  v b •  1 and  
s(pm( .l(a v b) A (a v b • = s(m).  But re(a) =0. 

Proposition 2.4. Let m e M and  (a  v b) A (a  v b • ~ Lr where  Lc c 
L(m).  Then:  

1. I f  p m ( a l ( a v b ) A ( a v b •  t h e n s ( m ) A a = O .  
2. I f s ( m ) = l ,  t h e n p m ( a l ( a v b ) A ( a v b •  

ProoF (1) I f  p m ( a l ( a v b ) A ( a v b •  , then  s ( m ) * ( ( a v b ) A  
(a  v b• - a. It means  s (m)  A a <-- a • = O. 

Sta tement  2 fol lows f rom 1. [ ]  

The a u t h o r  does  not  know if  A x i o m  C is satisfied. 

3. T H E  C O N D I T I O N A L  P R O B A B I L I T Y  O N  Q U A N T U M  
L O G I C  AS A F U N C T I O N  

Let (L, M )  be q.f.s, and  M be a o ' -convex set o f  states. F o r  s impl ic i ty  
o f  fo rmula t ion  we shal l  a s sume tha t  Lc c Lo and  1 ~ Lc. 

Definition 3.1. Let (L, M )  be a q.f.s, and  M be a o--convex set o f  states.  
Let p : L x Lc ~ [0, oe) sat isfy:  

(a) F o r  any be  Lc, p(" Ib) e M and  p(blb) = 1. 
(b) I f p ( c [ 1 ) = l  and  b, c * b ~ L c ,  then  

p ("  lb) = p ( c ,  bib ) .p ( .  ]c* b) 
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(c) I f a ,  b, c e L a n d a v b ,  a v b v c e L c ,  then 

P(alav bv  c )=p(a tav  b) 'p(a v bla v bv c) 

The funct ion p ( .  ]. ) will be called a funct ion o f  condit ional  probabil i ty 
on L. 

Lemma 3.1. Let a, b, c e L. Then:  

1. I f  b e  Lc, then p(alb) =p(b*alb).  
2. I f  a (--)b, b e Lc, then p(alb)= p(a A bib). 
3. I f  b, bv c e L t  and a<-b, then p(atbv c)=p(alb) .p(b lbv  c). 

The p r o o f  o f  this L e m m a  is obvious. 
The main  result o f  this paper  is summarized  in the fol lowing theorem. 

Theorem 3.2. Let (L, M )  be q.f.s. Let M be a o '-convex set o f  states. 
Let m e M and a, b e L such that  m(a) = re(b) = 1 holds, and m(a A b) = 1. 
Let c e Lo and Lc -- {b e LlbJ_c}. Let p : L x Lc -) [0, 1] satisfy Axioms (a) - (c)  
o f  Definition 3.1. Let there be s(p(.  I1)) = c. Then  for any b e L~, s(p(.  Ib)) 
exists and  s(p(.  Ib)) -- c* b. Moreover ,  if a <- b (a  e L, b e L~), then 

p(alb) = p(al 1)/p(bl  1) 

Conversely,  let (L, M )  be a suppor ted  system and M be a (r-convex 
set o f  states. I f  the funct ion pro(. I" ), m e M, satisfies the axioms I - I I I  on 
L x L(m), then it satisfies the axioms (a) - (c)  o f  Definition 3.1. 

Proof. First we show that  s ( p ( . l b ) = c * b  for all beL t .  This means 
that  we must  prove that  p(alb) = 0 iff a • c* b. Let p(a[b) = 0, Then  p(a-u A 
bib) = 1. Hence  

0 =p(b A (a-u A b)-Llb) =p(b A (a • A b)-ulb)"p(b[1) 

=p(b A (a-u A b)ll  ) 

The last equality holds by Lemma 3.1, part  3. But s ( p ( . l l ) ) =  c. Then 
c •  b A (a-u A b)-u. This means that  

c v b-u v (a-u A b) = b-u v (a  "L A b) (1) 

N o w  we have 

(c* b) v b-u v (a-u A b) = ((c v b-u) A b) v b-u v (a  • A b) 

= ((c v b-u) A (b v b-u)) v (a-u a b) 

= (c  v b -u) v (a-u A b)  

=cv  b-uv(a-u A b) 

=b• Ab) 
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The last equality follows from (1) and this implies that c* b --- b -t v (a -L ̂  b). 
Moreover ,  c* b - b. Then 

c*b <- (b I v  (a J-^ b)) ^ b = a I ^  b<-a I (2) 

From relation (2) we have c* b • a. 
Let c * b •  Since p ( c ] l ) =  1, we can use Axiom (b) from Definition 

3.1, We get 

p(a]b) = p ( c *  bll)  "p(alc* b) 

But p(alc* b) = 0. This means that s (p( .  Ib)) exists and s (p( .  ib)) = c* b. 
Let a ~< b. Then from Lemma 3.1, part  3 we have 

p ( a l l )  p(a lb) 'p (b l l )  
p ( b l l ) -  p (b l l )  - p ( a l b )  

It is clear that the function p " ( - l "  ) satisfies Axiom (a). Axiom (c) 
follows directly from Axiom III .  We shall show only (b). 

Let p " ( c l l ) =  1. Then s(m)<-c. Since 

pro(C* bib ) ~- m(c* b ) /m(  b) = m(b)/rn(b)  = 1 

then p " ( c *  bib ) .pro(. ic ,  b) = p " ( "  Ic* b). But 

s ( p ' ( "  i c* b)) = s(m) * (c* b) 

= (s(m) v (c * b) l )  A (c * b) 

= (s(m) v (c • A b) v b l)  ^ (cv  b • ^ b 

= (s(m) v b I v  (c I ^  b ) ) ^ ( c v b • b 

= (s(m) v b l )  ^ b 

= s ( m ) * b  

=s (p" ( . ]b ) )  

From this we have p " ( .  Ib) = p " ( c *  b i b ) . p " ( ,  tc* b). 

Let m be from M and s (p( .  11)) = s(m). Then for a ~ L, Corollary 3.2. L 
a -< b [b ~ L(m)]  we have 

p(alb) = m(a ) /m(b )  

Theorem3.3. Let (L, M)  be a supported system and let M be a 
tr-convex set of  states. I f  s (p( .  11) = 1, then 

p ( a l b ) = p ( a ^ b l b )  iff a,~-~b 

Proof. It is enough to show that p(atb ) =p(a ^ bib ) implies a ,~,b. 
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Let  p ( a [ b ) = p ( a ^  bib). This  m e a n s  tha t  0 = p ( a  ^ ( a ^  b)--Ib)= 
p ( b •  N o w  we have  

0 = p ( b  • v (a  A (a  A b) •  = p ( ( b  • v a )  A (a  I ̂  b)• 

But  s ( p ( .  Ib)) = b a n d  t h e n  we get b_l_(b • v a)  ^ (a A b J-). This  m e a n s  tha t  

b • - (b  • v a ' )  A ( b "  v a )  -< b "  

But  f rom the  p r o p e r t y  o f  c o m p a t i b i l i t y  we have  a ~-> b. [ ]  
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